106 research outputs found

    pH and CO2 sensing by curcumin-coloured cellophane test strip

    Get PDF

    Zinc-rich paint coatings containing either ionic surfactant-modified or functionalized multi-walled carbon nanotube-supported polypyrrole utilized to protect cold-rolled steel against corrosion

    Get PDF
    The intense anodic action of sacrificial zinc pigments ensured viable galvanic function of the highly porous liquid zinc-rich paints (ZRPs) result in deteriorated long-term corrosion resistance often accompanied by cathodic delamination phenomena. In our approach, such a efficacy problem related to the corrosion preventive function of ZRPs is addressed by the application of intimately structured anodic inhibitor particles composed of nano-size alumina and either polyelectrolyte-modified or chemically functionalized multi-walled carbon nanotubes (MWCNT) supported polypyrrole (PPy) in one specific zinc-rich hybrid paint formulation providing balanced active–passive protective functionality. High dispersity of the nanotube-free PPy-deposited inhibitor particles (PDIPs) with uneven polymer distribution on the alumina carrier was confirmed by transmission electron microscopy (TEM) observations. Furthermore, the MWCNT-embedded PDIPs indicated almost complete surface coverage of the alumina-nanotube carriers by PPy with decreased microstructure dispersity which is attributed to the effect of double-flocculants type co-deposition of the oppositely charged polymers causing coalescence of the modified particles. Depending on the amount of the nanotubes and their proportion to the quantities of the deposited PPy and polyelectrolyte as well as the concentration of the surfactant, varied micron-scale association of the PDIPs in the suspensions of dissolved alkyd matrix was disclosed by rheology characterization carried out at particular solid contents similar to hybrid paint formulation. The evenly distributed but less densely packed nano-structure of PPy was evidenced on the polyelectrolyte-modified nanotubes by Fourier-transform infrared (FTIR) spectroscopy whereas more compact polymer film formation was confirmed on the surface of functionalized nanotubes. According to the greater electrical conductivity, enhanced electroactivity and reversibility of the nanotube-embedded PDIPs were indicated over the nanotube-free particles by cyclic voltammetry, depending on the type and the amount of the nanotubes and their modification. Protection function of the hybrid paint coatings (formulated with spherical zinc pigment at 70 wt.%) was investigated by immersion and salt-spray chamber tests over 254 and 142 day periods, respectively. Firm barrier nature of the nanotube-embedded PDIP contained hybrids was proved by electrochemical impedance spectroscopy (EIS) and radio-frequency glow-discharge optical-emission-spectroscopy (RF-GD-OES). Furthermore, due to the increased conductivity of the nanotube-embedded PDIPs cemented in epoxy primers optimally at 0.4 and 0.6 wt.%, altered corrosion preventive behaviour of the hybrid coatings was indicated by the positively polarized open-circuit potentials (OCPs) and the X-ray photoelectron spectroscopy (XPS) detected lower relative quantities of the interfacially accumulated zinc corrosion products, moderate oxidative degradation of the epoxy vehicle. Decreasing oxidative conversion of iron at the surface was indicated by XPS found to correlate with the increasing intensity of zinc corrosion and decreasing oxidative degradation of the epoxy binder, according to the higher nanotube contents of hybrid coatings. In addition, inhibited zinc corrosion caused low rate of oxidative degradation of epoxy, allowing increased durability of coating adhesion and cohesion thereby ensuring reliable protection by zinc-rich compositions. As a conclusion, modified or functionalized MWCNTs acting as unexchangeable doping agents promote enhanced reversibility and increased conductivity of PPy, forming nano-size inhibitor particles with advanced features. Thus, such inhibitor nano-particles in zinc-rich hybrid compositions afford improved barrier and high efficiency galvanic–cathodic corrosion preventive function, exceeding long-term protection capability of the conventional ZRPs

    Solid-state encapsulation of Ag and sulfadiazine on zeolite Y carrier

    Get PDF
    Hypothesis: A new simplified procedure for encapsulation of antibacterial silver nanoparticles by Solid-state Ion Exchange (SSIE) procedure over zeolite Y, followed by deposition of sulfadiazine (SD) by dry mixing was examined for the preparation of topical antibacterial formulations. The ion-exchange and adsorptive properties of the zeolite matrix were utilized for the bactericidal Ag deposition and loading of antibiotic sulfadiazine. Experiments: Assessment of the encapsulation efficiency of both active components loaded by solid and liquid deposition methods was made by X-ray diffraction, TEM, FT-IR spectroscopy and thermogravimetric analysis (TGA). SD release kinetics was also determined. Findings: Sustained delivery of sulfadiazine has been observed from the Ag-modified zeolites compared to the parent HY material. It was found that if SD was loaded in solution, part of the zeolite silver ions was released and interacted with SD, forming AgSD. By solid-state SD deposition, the reaction between the drug and the silver was restricted within the limits of inter-atomic interaction, and total but prolonged drug release occurred. © 2015 Published by Elsevier Inc

    One-pot synthesis of gelatin-based, slow-release polymer microparticles containing silver nanoparticles and their application in anti-fouling paint

    Get PDF
    Gelatinous polymer matrix microparticles containing silver nanoparticles (AgNPs) were prepared by a novel method to obtain quasi non-swelling anti-fouling paint additives with slow-release characteristics. A w/o type dispersion were elaborated with the aqueous phase of gelatin, urea, silver-nitrate and formaldehyde dispersed in linseed oil. Gelatin was cross-linked by formaldehyde, together with urea for limiting the swelling of the product. Silver-nitrate was reduced with the assistance of gelatin and formaldehyde into homogenously dispersed AgNPs. The microparticles and embedded AgNPs were visualized by scanning and transmission electronmicroscopy. Encapsulated AgNPs with ~18nm crystallite size were identified by X-ray powder diffraction. Characterization of gelatin-urea-formaldehyde polymer matrices was carried out by attenuated total reflectance FTIR spectroscopy. Silver dissolution from microparticles and paints with AgNP-containing microparticles was measured by inductively coupled plasma spectrometer and resulted in highly sustained release, compared to unmodified gelatin microparticles and paints containing uncapsulated silver salts. A seven month-long fouling experiment run in natural sweetwater media showed that solvent-based acrylic paint with AgNPs-containing gelatinous microparticles as additives offered resistance against biofouling at low Ag-release ratio

    Effects of ursolic acid on the structural and morphological behaviours of dipalmitoyl lecithin vesicles.

    Get PDF
    Effects of ursolic acid on the structural and morphological characteristics of dipalmitoyl lecithin(DPPC)-water system was studied by using differential scanning calorimetry (DSC), small- and wide-angle X-ray scattering (SWAXS), freeze-fracture method combined with transmission electron-microscopy (FF-TEM) and infrared spectroscopy (FT-IR). The surface of the uncorrelated lipid system is rippled or grained and a huge number of small, presumably unilamellar vesicles are present if the UA/DPPC molar ratio is 0.1mol/mol or higher. Besides the destroyed layer packing of regular multilamellar vesicles, non-bilayer (e.g. cubic or hexagonal) local structures are evidenced by SAXS and FF-TEM methods. The ability of UA to induce non-bilayer structures in hydrated DPPC system originates from the actual geometry form of associated lipid and UA molecules as concluded from the FT-IR measurements and theoretical calculations. Beside numerous beneficial e.g. chemopreventive and chemotherapeutic effect of ursolic acid against cancer, their impact to modify the lipid bilayers can be utilized in liposomal formulations

    A mechanistic view of lipid membrane disrupting effect of PAMAM dendrimers

    Get PDF
    The effect of 5th generation polyamidoamine (PAMAM G5) dendrimers on multilamellar dipalmitoylphosphocholine (DPPC) vesicles was investigated. PAMAM was added in two different concentration to the lipids (10-3 and 10-2 dendrimer/lipid molar ratios). The thermal behavior of the evolved systems was characterized by DSC; while the structure and the morphology were investigated with small- and wide-angel X-ray scattering (SWAXS), freeze-fracture electron microscopy (FFTEM) and phosphorus-31 nuclear magnetic resonance (31P-NMR) spectroscopy, respectively. IR spectroscopy was used to study the molecular interactions between PAMAM and DPPC. The obtained results show that the dendrimers added in 10-3 molar ratio to the lipids generate minor perturbations in the multilamellar structure and thermal character of liposomes, while added in 10-2 molar ratio dendrimers cause major disturbance in the vesicular system. The terminal amino groups of the dendrimers are in strong interaction with the phosphate headgroups and through this binding dendrimers disrupt the regular multilamellar structure of DPPC. Besides highly swollen, fragmented bilayers, small vesicles are formed

    Dispersion and stabilization of cochleate nanoparticles

    Get PDF
    Cochleates, calcium-stabilized membrane rolls of nanoscale diameter, promise a unique and efficient way of delivering lipid-soluble drugs, proteins or nucleic acids into biological systems because they protect the encapsulated material against enzymatic or chemical degradation. Self-aggregation, which typically arises during production and storage is a major obstacle that has so far precluded the development of an efficient cochleate-based drug-delivery system. Here we show that citric acid, added transiently in a narrow concentration range, effectively disperses cochleate aggregates, stabilizes the disperse state for long-term storage and preserves the canonical ultrastructure and topological characteristics of cochleate nanoparticles

    Structure and Function of Trypsin-Loaded Fibrinolytic Liposomes

    Get PDF
    Protease encapsulation and its targeted release in thrombi may contribute to the reduction of haemorrhagic complications of thrombolysis. We aimed to prepare sterically stabilized trypsin-loaded liposomes () and characterize their structure and fibrinolytic efficiency. Hydrogenated soybean phosphatidylcholine-based were prepared and their structure was studied by transmission electron microscopy combined with freeze fracture (FF-TEM), Fourier transform infrared spectroscopy (FT-IR), and small-angle X-ray scattering (SAXS). Fibrinolytic activity was examined at 45, 37, or 24°C on fibrin or plasma clots with turbidimetric and permeation-driven lysis assays. Trypsin was shown to be attached to the inner surface of vesicles (SAXS and FF-TEM) close to the lipid hydrophilic/hydrophobic interface (FT-IR). The thermosensitivity of was evidenced by enhanced fibrinolysis at 45°C: time to reduce the maximal turbidity to 20% decreased by 8.6% compared to 37°C and fibrin degradation product concentration in the permeation lysis assay was 2-fold to 5-fold higher than that at 24°C. exerted its fibrinolytic action on fibrin clots under both static and dynamic conditions, whereas plasma clot dissolution was observed only in the permeation-driven assay. The improved fibrinolytic efficiency of under dynamic conditions suggests that they may serve as a novel therapeutic candidate for dissolution of intravascular thrombi, which are typically exposed to permeation forces
    corecore